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Executive Summary

Until recently, ship design practice was based primarily on yield and buckling

considerations of structures subjected to maximum design loads. There was little explicit

consideration of fatigue failure due to repeated lower level stresses caused by wave action,

slamming and vibration.  Some relatively new vessels, such as tankers in the TRANS Alaska

Pipeline trade (TAPs), developed numerous small cracks.  As long as these cracks remained small,

they generally did not threaten the structural integrity of the ship.  The high toughness of modern

ship steels generally prevented sudden brittle fracture, so cracks could grow to considerable lengths

before they posed serious structural problems.  Nonetheless, cracking concerns did lead to increased

requirements for inspection and repair, e.g., the Coast Guard requirements for Critical Area

Inspection Plans (CAIPs).  Much research was conducted to predict the initiation and development

of such cracks, and classification societies' rules now require explicit consideration of fatigue

failure.

Meanwhile, it is essential to be able to predict the safe service life of structures with various

small cracks.  Classical fracture mechanics offers methods to predict initiation and growth of fatigue

cracks in homogenous plating.  Real ship structures are complicated by the presence of stiffeners,

and complex residual stress fields caused by welding of these stiffeners.  The purpose of the current

research is to assess methods to predict the growth of large cracks in realistic stiffened ship plating.

This report presents the results of a series of experiments with large cracks propagating

across welded stiffened panels.  Observed growth rates are compared to various predictive methods,

from simple classical methods (modified to account for the presence of stiffeners and residual

stresses), to detailed finite element methods executed on supercomputers.   It is concluded that

stable crack propagation behavior can be relied upon, and can be conservatively predicted using

relatively simple approaches.  These techniques can aid in making rational decisions regarding

scheduling of repairs, and allow a better prediction of the risk to structural integrity from fatigue

cracking.
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INTRODUCTION                                                                               

1.2 PROBLEM STATEMENT

Structural elements subjected to fluctuating loads of significant amplitude are susceptible to fatigue

cracking [98, 33].   The primary variables influencing the possibility of fatigue cracking in welded

steel structural elements are the severity of the stress concentration of the particular design detail

and the nominal stress range, i.e. the algebraic difference between the maximum nominal stress and

the minimum nominal stress.  Ship structure is subjected to significant stress ranges from wave

loading in rough seas as well as vibration from slamming or impact of waves, and therefore fatigue

cracking is a potential problem with ships.

Classification societies have recently developed rigorous fatigue design criteria that should

substantially reduce the incidence of fatigue cracking in ships [5, 30].  However, most ships in

service today were not explicitly designed for fatigue, and consequently many of these ships are

exhibiting frequent cracking [97, 2].   Fatigue cracking in modern ships is a serviceability problem

rather than a structural integrity problem [118].  Fatigue cracks cause leaks and are a nuisance to

repair.  A large tanker may have hundreds or even thousands of fatigue cracks discovered during

inspection [2, 97, 118, 149-151].  Yet these cracks are not an immediate threat to the structural

integrity of the ship.  The tolerance of ships to these cracks is attributable to the notch toughness of

the steel and the overall structural redundancy.

Fatigue design is usually performed using the S-N approach, where structural details are grouped

into categories sharing a common S-N curve.  The S-N curve gives the number of cycles before the

element develops a through-thickness crack, given the stress range for those N cycles.  This

approach is suitable for design.  However, the number of cycles, S, to develop a through-thickness

crack represents only a small fraction of the total fatigue life in redundant structures.  In ships,

cracks may propagate to lengths as great as eight meters before structural integrity is compromised.
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Therefore, for assessment of existing ships and other structures, particularly if there are existing

through-thickness cracks, a method is needed for predicting the safe propagation life of long,

through-thickness cracks. The research involved in this report is focused on developing fatigue

crack propagation models for predicting worst-case crack growth rates in welded stiffened panels, a

common structural element in ship structure.

Although crack growth in plates and riveted stiffened panels (for airframes) has been studied

extensively, few investigations of crack propagation in a panel with multiple welded stiffeners were

found.  Welded stiffeners affect crack growth in a unique way because of residual stresses present

from the welding process.  Furthermore, in contrast to riveted stiffeners, cracks may propagate into,

and sever, integral welded stiffeners.

In addition to calculating the crack growth rate, it is also essential to determine a safe critical crack

size. Current fracture models are based on brittle fracture and predict unreasonably conservative

critical crack lengths on the order of 400-mm [129].  Field observations have consistently shown

that crack lengths can greatly exceed the brittle fracture model predictions without a complete

fracture occurring.  For example, a crack 150-mm long was noticed in a U.S. Navy frigate and that

this crack propagated to 8 meters in length during a severe 36-hour storm involving about 10,000

stress reversals.  More recently, a 15-meter crack propagated across the deck of the 744-foot Ro-Ro

(Roll-on, roll-off vehicle carrier) “Great Land” during a single severe storm without complete brittle

fracture of the section [102].  Such tolerance illustrates the fracture resistance of typical ship steel

and the need for improved models to take advantage of the residual strength found in the redundant

structure.

Prior to 1940, steel ships were riveted.  Riveted construction was good for structural integrity

because a crack in one structural element could not propagate into adjoining structural elements.  If

a crack propagated in the shell, the intact structural elements, such as stiffeners, limited the crack

opening and often arrested the crack growth.  A corresponding increase in the amount of force

carried by the stiffeners resulted from providing displacement control to the crack opening.  This

effect is known as load shedding.
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During World War II, all-welded construction was introduced, perhaps most noted in the

construction of Liberty Ships.   A combination of steel with low notch toughness, poor weld

processes, and high stress concentrating details contributed to brittle fracture in many of these ships

[18].  In addition, welding creates tensile residual stresses near stiffeners, which tend to accelerate

crack growth.  The investigation of these fractures led to the founding of the Ship Structure

Committee.  These early investigations led to notch toughness requirements for ship steel, as well as

improved welding methods and design details.  The adoption of these provisions substantially

reduced the incidence of brittle fracture.

The advent of high-strength steel in the 1970’s allowed ship designers to design for a higher

allowable stress.  Unfortunately, the stress ranges increase in magnitude if the allowable stress is

increased, because the scantlings are typically reduced relative to what they would be if low-

strength steel were used.  Although the yield and ultimate tensile strength of the steel had increased,

the resistance to fatigue cracking of welded details is independent of the strength level and the type

of steel [33, 34, 98, 52, 54, 69, 70].  Therefore, the higher stress ranges have translated to an

increase in the incidence of cracking.  Fortunately, the notch toughness of the steel and weld metal

allows the cracks to grow in a stable manner.

The number of cracks observed in tankships has markedly increased in recent years, including those

of the Trans-Alaska Pipeline Service (TAPS) [97].  As a result, frequent visual inspections are

essential. A formal documentation plan known as NVIC 15-91 has been prepared by the U.S. Coast

Guard regarding the tracking of various structural failures [163].  The guidelines describe three

categories of “failures” that are related to the impact the failures could have on service structural

performance.  Ship owners submit the documentation, known as critical area inspection plans

(CAIP’s), as a method of monitoring the performance of repairs and a means of identifying areas of

recurring failure.

Inspection procedures have been the subject of numerous investigations in terms of their quality and

reliability as a fracture control procedure.  A study by Kim et al. [84] concluded that cracks greater
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than 200 mm in length could be detected 70% of the time, while a study by Demsetz estimated only

a 50% probability of detecting a crack less than 300-mm [32]. These reports, in combination with

the number of cracks surfacing in the aging tankships, has stimulated interest in understanding the

behavior of cracks propagating through welded, stiffened panels.

There is a need to estimate the time before any crack can grow to a critical length, or length at

which the ship’s integrity is susceptible.  Such estimates severely affect the profitability of ship

transport, as any time out of service represents a substantial loss in revenue.  At the same time, any

risk of failure is a financial gamble as well.  Better prediction models developed in this research will

advance the assessment of safety and economic considerations.

1.3 OBJECTIVES OF THE PRESENT RESEARCH

One of the primary goals of this research is to recreate and observe fatigue crack propagation in a

panel with multiple, welded stiffeners.  Although fatigue cracks have been observed in the field,

never before has load-controlled fatigue crack growth been recorded through multiple welded

stiffeners.

The second objective is to investigate the load shedding effects of crack propagation through

stiffening elements.  The experimental setup attempts to simulate the cellular, redundant structure of

tanker vessels.  The growth of long fatigue cracks in a redundant system will allow observation of

the interplay between crack growth parameters and structural performance.

A third objective is to gauge the significance of residual stresses on the rate of crack growth.

Welding creates tensile residual stresses, on the order of the yield stress of the steel in the vicinity of

the stiffeners, and lower level compressive stresses in the plating between the stiffeners.  These

stresses increase crack growth rates near stiffeners, and decrease (or arrest) it between stiffeners.   It
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is necessary to identify worst-case scenarios for crack growth rates to correctly estimate the time for

a crack to propagate from the detectable size to the critical length.

Developing both analytical and finite element methods of predicting crack growth is the final goal

of the research.  These models of crack growth will facilitate successful use of these research results

in the industry.  Worst-case models of crack growth rates are compared with experimental results,

bridging the gap between predictions and actual behavior. These models provide essential tools for

fatigue life predictions, inspection interval rationale, and fitness for service qualifications for vessels

containing the particular configurations tested.
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BACKGROUND                                                                                  

1.4 FRACTURE MECHANICS

Fundamental principles of fracture mechanics are used to predict fatigue crack propagation.  Linear

Elastic Fracture Mechanics (LEFM) can be used under conditions where there is relatively little

plastic deformation around the crack tip.  LEFM is applicable to high-cycle fatigue crack growth,

which typically occurs when applied stresses are well below the yield stress of the steel.  LEFM is

also usually applicable to brittle fracture, which often occurs at applied stress levels less than the

yield stress.

Elastic-Plastic Fracture Mechanics (EPFM) considers limited amounts of plastic deformation during

fracture.   Both fields of Fracture Mechanics deal with fracture as a function of crack size, applied

stress or displacement, and material toughness.   There are many available texts that review the

principles of both LEFM and EPFM [6, 15, 22].  Reemsnyder presented a review of fatigue and

fracture principles relevant to ship structures [126].  The application of ductile fracture models is

explained in a recent Ship Structure Committee report SSC-393 [35].  Therefore, only a brief review

will be presented here.

The root of LEFM is the stress-intensity factor, K, which describes the magnitude of the stress field

at the crack tip by relating it to the applied gross-section stress acting remotely from the crack plane

and the crack length. The stress-intensity factor has units of MPa-m1/2 in S.I. units and ksi-in1/2 in

English units, although ASTM has recently changed the English unit to the Irwin.  Solutions have

been obtained for the stress-intensity factor for various geometrical configurations and loadings,

many of which can be found in handbooks [104, 131, 145]. Alternately, the stress intensity factor

can be determined from finite-element analysis or other numerical methods.

The solution for the stress-intensity factor for a through-thickness crack in an infinite panel with an

applied tensile stress is discussed here for example. The through thickness crack in an infinite plate
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is also referred to as the center-cracked tension (CCT) panel.   This solution forms the basis for most

crack models for stiffened panels.

The relation is:

aK πσ=                                                                                                      Eqn.  0-1

where “s” is the remotely applied nominal stress and “a” is the crack half-length, as described in

Figure 2-1.  The tensile stress should be taken as the stress in the panel at a distance away from the

crack where the stress distribution appears uniform.

Figure 2-1: Through thickness crack in infinite plate under tension.

To predict the onset of fracture using LEFM, the material’s fracture toughness is measured in terms

of a critical stress-intensity factor, KIc.  KIc may vary with constraint, loading rate, and temperature.

In order to maintain linear elastic conditions, KIc must be measured with very large thick specimens

to get valid results.  For relatively thin plates (< 26 mm), it is impossible to get valid KIc values.

Therefore, the fracture toughness is often estimated from correlation to “notch toughness”, i.e. the

results of the inexpensive Charpy V-Notch test (CVN) [22].
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For ship structures, the loading rate is usually moderate and an appropriate Kc correlation to the

CVN test is made by:

1)  Obtain dynamic fracture toughness Kd from CVN through the relation:

CVNK d 5.11=           Eqn.  0-2

                where CVN is in Joules and Kd in MPa-m1/2

2) Shifting the Kd curve -38 degrees Celsius to obtain an estimate of the fracture toughness

appropriate for intermediate loading rates.

When linear elastic conditions exist, or in cases where plasticity around the crack tip is negligible,

Linear Elastic Fracture Mechanics (LEFM) may be applied.  As previously introduced (Eqn. 2-1),

the K-factor characterizes the crack driving force.  When plasticity effects are more substantial, the

driving force may be characterized through the use of Elastic-Plastic Fracture Mechanics (EPFM).

EPFM characterizes crack tip stress and strain fields through the use of the J-Integral or the Crack-

Tip Opening Displacement (CTOD) rather than the stress-intensity factor.  The J Integral is a

measure of the change in potential energy associated with an incremental crack extension.  It is

usually calculated with a finite element analysis.

For linear elastic conditions, the J integral can be directly related to K. For plane-stress conditions:

JEK =   where E is the modulus of elasticity.            Eqn.  0-3

The crack-tip opening displacement (CTOD) is directly proportional to the J integral and therefore

is really no different.  However, the CTOD is the preferred EPFM parameter in some industries [33,

129].

To predict the onset of fracture in EPFM, the material’s fracture toughness is measured in terms of a

critical value of the J-integral or CTOD.  Similar to Kc, the critical J or CTOD may vary with

constraint, loading rate, and temperature.  However, the requirements for specimen size and

thickness are not nearly as stringent using these EPFM parameters.
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The applied J-integral is often calculated using finite-element analysis. Dexter and Xiao [169]

discussed issues involved in calculating J-integral values for stiffened panels in typical ship

structure. These issues are also discussed in SSC-393 [35].   A comparison with the methodology

and full-scale testing of structural components is made, and observations in J-integral behavior have

led to a simple bi-linear approximation equation for applied J-integrals in assessing ductile fracture.

Stenseng has also shown the use of this procedure applied to a plate with a single, coped stiffener

and a crack emerging underneath [141].

EPFM is really only valid for limited amounts of plasticity.  As explained in SSC-393 [35], the

conditions of fracture in typical relatively thin (less than 26 mm thick) ship plate with notch

toughness (CVN test) requirements involve extensive plasticity.  This extensive plasticity

invalidates the EPFM procedures.  SSC-393 concludes that maximum load capacity of a cracked

section in such relatively thin notch tough plate can be predicted accurately in terms of the plastic

limit load for the net section.

The failure analysis diagram (FAD) is a convenient way of representing the interaction between

fracture and net-section collapse.   FADs are explained in detail in the paper by Reemsnyder [126]

and in SSC-393 [35].   The FAD is also the basis of the procedures in PD-6493 [23].  PD6493 has

very well documented step-by-step procedures for assessing fatigue crack growth and fracture from

weld flaws.  SSC-393 discusses ways that PD-6493 can be applied to larger cracks typical in ship

structure.

Just as the range in stress governs the fatigue life of details, fatigue crack growth is governed by

the range in stress-intensity factor, or ∆K.  Paris noted that the rate of crack growth could be

described by fitting a power law, which is known as the Paris Law [117].

The Paris law is expressed as:
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mKC
dN
da

)(* ∆=                      Eqn.  0-4

where a = half crack length

N = number of cycles

C = an experimentally determined coefficient

∆K = stress intensity factor range

m = material constant

The Paris Law is a relatively simple model that has proven to predict crack growth in a variety of

situations with good success. Experimentally determined da/dN verses ∆K data typically exhibit a

sigmoidal shape as shown in Figure 2-2.
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Figure 0-2: Typical plot of fatigue life [109].

The Paris Law is fit to the middle range of ∆K, from 5-20 MPa-m1/2 .  Regime 1 indicates that there

is a ∆K threshold, ∆Kth.  For steel, the threshold value of ∆K is can be conservatively taken as 3

MPa-m1/2 .  For values of ∆K greater than this threshold, fatigue crack growth obeys the Paris Law.

Region 3 shows an acceleration of crack growth rate as ∆K approaches fracture toughness, KIC.  In
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region 3 fatigue crack growth is accompanied by some ductile tearing or brittle fracture in each

cycle.

It is important to keep in mind that it is difficult to achieve great accuracy using fracture mechanics

to predict crack growth rate.  First of all, there is a factor of ten or more scatter in experimental

da/dN data.  It is believed that a great deal of the scatter is due to experimental error, especially at

low growth rates near the threshold because it is difficult to avoid the effect of prior precracking of

the specimens at higher ∆K growth rates.  (Unfortunately, this uncertain region at the low growth

rates is also the most important for predictions, since most of the life is spent at these low growth

rates.)  However, there is believed to be a great deal of inherent variability in the actual growth

rates, even if they were accurately measured.

To put the level of expected accuracy in perspective; one study [53] examined a large sample of

fatigue tests where the welding defects causing the cracks was determined after the test from the

fracture surfaces.  One group of experiments involved continuous longitudinal fillet welds and

another involved transverse groove welds.  The fatigue lives were known and were also calculated

using fracture mechanics.  These are the best of conditions for a fracture mechanics calculation,

where the stress and the defect size are known precisely.

The actual fatigue life was compared to the calculated fatigue lives.  Various crack models gave a

similar wide scatterband.  The width of the scatterband was typically equal to a factor of three on

life.  When the same data are plotted in the S-N curve format, the scatter is on the order of a factor

of ten on life.  Therefore, it can be concluded that about 70 percent of the scatter in the S-N data are

due to the effect of discontinuity size.  However, the inherent variability of the growth rates

undoubtedly contributes to the considerable remaining scatter.

The environment also influences crack propagation rates.  The effects of seawater on crack growth

in steel have been reported in SSC-326 and SSC-335 [25, 37].  A saltwater environment increases

crack growth rates at higher ∆K ranges.  In contrast, crack growth occurring in the near-threshold

region exhibits decreased propagation rates.  Such a phenomenon is explained by the corrosive
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effects of saltwater—at low stress intensity factor ranges, corrosion product building up at the crack

tip may actually retard crack growth by increasing crack closure.  As the stress intensity factor range

increases, however, corrosion product is less likely to cyclically accumulate at the crack tip, and

instead corrosion assists crack growth.  The environmental effects can often be included in the Paris

Law by slightly changing the coefficients C and m.

The value of m, the exponent in the Paris Law, is typically is equal to 3.0 for steel in air.  Careful

experimentation shows this value of m to range from 2.8 to 3.2.   As with any statistical fit to

experimental data, misleading results can sometimes be obtained.  Values of m as low as 2 and as

high as 5 have been reported in the literature.  However, it is our opinion, and the opinion of most

other researchers working in fatigue, that the value of m should be 3.0, and the other reported values

are actually due to error rather than actual variance in the slope of the data on the log-log plot.

Variance in the crack growth rate is usually expressed by variance in the coefficient C.  Most

researchers agree that all C-Mn steel has similar crack growth rates, and that the variance observed

is just the typical material variation.  In other words, there is not a real difference in the crack

growth rates among various types of C-Mn steels, there is only scatter.   As mentioned previously,

the scatter can be substantial, on the order of a factor of 10 difference between the minimum crack

growth rates and the maximum crack growth rates.  Therefore, most reported values of C are

intended to represent a conservative upper bound to the data.

Barsom and Rolfe [15] established an upper bound for a variety of ferritic steels where C was 6.8 x

10-12 for units of MPa and meters.  However, the British Standard Institute PD6493 [31] recommend

an upper bound of 9.5 x 10-12 for C.   (Both of these sources agree that m is equal to 3 for steel).  A

recent study of HSLA-80 steel [53] showed that the upper bound crack growth rate was close to 9.0

x 10-12, which is close to the upper bound recommended by PD6493.  Therefore, it appears Barsom

and Rolfe’s upper bound is not sufficiently conservative.

Taking the slope m equal to 3, the Paris Law may be integrated to get an expression for N as a

function of Sr and a:
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N −=                                                                         Eqn.  0-5

where k is a constant, Sr is the stress range, and ai  and af are the initial and final crack length,

respectively.  The constant k is equal to 2/(Cπ1.5).

Figure 0-3 illustrates a typical S-N curve.  The S-N curve is a design curve for characterizing the

susceptibility of specific structural details to fatigue.

Figure 0-3:  Typical S-N curve for fatigue design.

The integrated form of the Paris Law has the same form as the S-N curve, thus the two approaches

to modeling fatigue are interrelated.  The S-N curve, developed from full-scale test data, has built

into it some initial and final crack lengths.  If these crack sizes can be accurately characterized, the

Paris Law allows them to be explicitly included in the analysis.  Note that the exponent of 3 in the

Paris law is the same as the inverse slope of the S-N curves.  All S-N curves in the design codes,

such as AASHTO, AWS, BS7608, DnV, and ABS Safehull [5] use a constant inverse slope of 3.   

Fatigue tests are often described by their applied stress intensity factor range, or load ratio. The load

ratio, or R-ratio, is expressed as:
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                          Eqn.  0-6

where σmax and σmin  are applied stresses, and Kmax and Kmin are applied stress intensity factors.  By

convention, tensile stresses are positive.

Several definitions of ∆K exist which characterize the effectiveness of a loading cycle on crack

growth. When tensile loading is applied, plasticity forms in the region surrounding the crack. This

region has been stretched to occupy more area than previously occupied by the same material.

Upon removing the tensile load, the plastic region remains permanently deformed, creating

compressive forces around the plastic zone when the surrounding region unloads elastically.  As the

crack grows, a plastic zone path is left in the wake of the crack.  These plastic zones can be seen in

Figure 2-4.

Elber [45] theorized that this wake, and the compressive forces ahead of the current plastic zone, has

the tendency to keep the crack closed under limited amounts of applied tension.  This phenomenon

is known as crack closure. A crack will only grow when it is opened fully at the tip.  Therefore, a

portion of the tensile loading may not contribute to new crack growth and only serves to open the

crack.

previous plastic
zones (“plastic wake
zone”)

current plastic
zone

elastic

elastic -
plastic

Figure 2-4: Plastic zones formed in crack growth [109].
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Elber defined the effective tensile loading as:

opeff σσσ −=∆ max                                              Eqn.  0-7

where σop represents the amount of load necessary to open the crack up to the tip.

A ratio describing the effectiveness of an applied cycle was also defined:
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                     Eqn.  0-8

where ∆Keff = Kmax - Kop

Kop is defined as the amount of stress intensity factor necessary for the crack front to open. This

includes all the effects of internal forces—namely, that of residual stress and plasticity effects. De

Koning has presented an approach when plasticity effects are to be considered [88]. In the case of

most fatigue crack growth, however, plasticity effects are assumed to be negligible because the

majority of fatigue cycling occurs at stresses well below the material yield stress. The effective

stress intensity factor for opening the crack can be determined by the procedure outlined in Figure

0-5.
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Kapplied,  op > Ktotal, min

Yes

No

∆Keff = Kapplied, max -
Kapplied, op

∆Keff = Kapplied, max -
Kapplied, min

Ktotal, op = Kapplied,op + Kresidual + Kplasticity effects

Ktotal, max = Kapplied, max + Kresidual + Kplasticity effects

Ktotal, min = Kapplied, min +  Kresidual + Kplasticity effects

Ktotal = Kapplied forces + Kresidual + Kplasticity effects

At the onset of crack opening,
Ktotal, op  = 0
Therefore,

Kapplied, op = -Kresidual + -Kplasticity effects

Figure 0-5: Procedure for determining effective stress intensity factor range [109].

In regions of compressive residual stress (for which the K-factor solution will be discussed later),

Kop can be quite large and possibly consume most of the applied stress intensity factor.  When the

effective stress intensity factor is low, crack growth may slow down. If the effective ∆K decreases

below the ∆Keff threshold, the crack will arrest. Definitions of these various stress intensity factor

ranges can be seen graphically in Figure 2-6.
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∆σapplied
∆Kapplied

∆σeff
∆Keff

∆Kth

∆Kth, eff

Time

σ, K
Fatigue

loading cycle

Figure 2-6: Definitions of K-factor ranges.

A great number of references are available to discuss the Paris Law and various modifications

suggested to account for factors such as residual stress [22, 6].  A comprehensive guide to fatigue

crack growth can be found in Ellyin’s recent work [46].
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2.2 SHIP DESIGN AND ASSESSMENT GUIDELINES FOR FATIGUE AND

FRACTURE

Many papers have addressed the problem of cracking and crack propagation in ship structures,

giving guidelines on a wide range of issues from design to maintenance to repair. A good overview

of fatigue crack growth in ship structure is presented by Francis et al. [58].  The Ship Structure

Committee has published a series of reports addressing various aspects of design, maintenance and

assessment [43, 80, 81, 99, 100, 128, 130].  Specifically, SSC-244 established toughness

requirements for ship structural steel.  Minimum toughness requirements were specified in terms of

both the 5/8-inch ductile tear test and Charpy V-notch test.

Prof. Stanley T. Rolfe of the University of Kansas significantly influenced the SSC-224 report.  His

1974 paper [128] summarized the application of fracture mechanics to ship hull design and fracture

performance. Rolfe identified the key factors to insure ductile failure modes, and discussed the

interaction among them.  Primary factors in crack growth were the stress level, flaw size and

material toughness, while secondary factors included temperature, residual stress and loading rate.

To assure ductile behavior, a minimum value of 339 Joules was recommended based on the 16-mm

ductile tear test conducted at room temperature.  A coupled criterion was that the ratio of the

fracture toughness to the yield stress was at least 1.5, where fracture toughness is in units of ksi-in1/2

and yield stress is in ksi. (Fracture toughness to yield strength ratio must be greater than 0.24, where

fracture toughness is measured in MPa-m1/2 and the yield stress in MPa.)  These conditions were

considered conservative because they were based on the assumption of dynamic loading in the

ships, while in reality the loading rate is tending toward static more so than dynamic.

Specific ship structural steels were studied in 1973 by Kinoshita et al. in Japan [85].  Large plate

specimens of mild and high strength steel were tested, verifying that their fatigue behavior could be

predicted using the Paris Law.  In addition, a ship hull corner detail with an edge notch was tested

and modeled with finite element analysis (FEA).  Both a constant amplitude loading and a two-step
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loading was performed, the results of which suggested the Paris Law in conjunction with FEA K-

values could be successfully applied to ship hull crack propagation.

Jordan et al. [80, 81] documented fatigue sensitive details in older ship structures.  Cracking in

tanker ships is documented in a series of reports from the Tanker Structure Cooperative Forum

[149-151].

In 1993, Rolfe et al. directly addressed the high incidence of cracking in TAPS trade tankers [129].

Critical details were identified, where the ratholes near master butt welds and drainage holes

presented the most critical concern.  A characteristic material fracture toughness was determined

from typical TAPS service tankers in terms of CTOD, with minimum values found in the base metal

of .061 mm (.024 in).   This toughness value was converted to an approximate value of K using the

LEFM relation:

                         mMPaEmK FLcIc ⋅== 6.101σδ                                                 Eqn.  0-9

where KIc = critical stress intensity factor, MPa*m1/2

m ≈ 1.7 based on research studies of structural grade steels

δc = CTOD value in m., in base metal of TAPS trade tankers = 6.1x10-5 m

E = modulus of elasticity,  206.9x103 (MPa)

σFL = flow stress (Average of yield and ultimate tensile strength), MPa
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This results in a KIC value of:
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5.926.101

)109.206)(5.482)(101.6(7.1 35

This value was rounded up to 110 MPa-m1/2  to obtain a reasonable estimate of the critical crack

size.  Using LEFM, Rolfe calculated a critical crack size for the material based on the stress

intensity factor for the through-thickness crack in an infinite plate under uniform tension. A
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coefficient of 0.6 was used to account for the crack opening constraint, or crack growth retardation,

provided by several stiffeners.  The final relation is as follows:

CRMSIc aRFK πσ max)(=                                                                                           Eqn.  0-10

where aCR = Critical crack size half length, in m.

RFMS= Reduction factor for multiple stiffeners, approximately 0.6

σMAX = Maximum working stress, given as 2/3σys = 234.4 MPa

Solving for the critical crack size,
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                                      Eqn.  0-11

This LEFM approach is very conservative despite the omission of residual stress effects on crack

growth, since an applied stress of 234 MPa would induce significant plasticity at the crack tip.

Plasticity at the crack tip is not accounted for in an LEFM analysis, which treats the ductile steel as

a brittle material.  (Note LEFM can be applied to fatigue crack growth, however, because the vast

majority of fatigue crack propagation occurs at applied stresses well below the yield stress of the

material, thereby creating only a negligible amount of plasticity at the crack tip).

Rolfe’s paper [129] went further to outline a method for extrapolating constant stress fatigue life

predictions to variable amplitude loading.  In concluding, it was recommended that a two year

inspection interval could be deemed appropriate if cracks no larger than a 50-mm surface crack

were allowed.  If a 75-mm crack was to be the maximum allowed, then the recommended

inspection interval was reduced to one year.  Finally, it was noted that the actual reduction factor

due to multiple stiffeners may be even lower than 0.6, although residual stresses were not taken into

account, and suggested experimental determination of the actual effects.

Rolfe’s calculation for a critical stress-intensity factor conservatively underestimates the critical

crack size, based on service observations, i.e. cracks up to 8-m in length reported without
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catastrophic fracture as indicated in the introduction.  In SSC-393 [35], Dexter and Gentilcore

illustrated that ships constructed with the minimum toughness materials would fail by net section

collapse, in most cases, rather than brittle fracture.  Garwood et al. [61] have corroborated this

phenomena, outlining the assessment procedure provided by BSI PD6493 for structural collapse.

However, Bacci and Ligaro [12] assert that brittle fracture can occur in any material given the right

conditions.  They present an evaluation procedure illustrating the transition between brittle fracture

and ductile fracture.

The toughness of weld metal usually exceeds the base metal toughness, allowing the crack to

propagate in a stable manner in most cases.  In the heat-affected zone (HAZ) adjacent to the weld,

many steels develop local brittle zones which may induce limited brittle fracture or “pop-in”

fracture. Pisarski and Slatcher [121] have noted that these pop-in fractures will be limited in

structurally redundant systems.  Peak loading conditions, minimum design temperature and flaw

location in the most brittle portion of the HAZ would need to be coincident for an extensive fracture

to occur.  In addition, these local fractures usually propagate into the higher toughness base metal

where they are arrested.
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2.3 FATIGUE CRACK PROPAGATION IN STIFFENED PANELS

A great amount of research has been performed in the past on the solution for the stress intensity

factor for cracked, stiffened panels.  Much of the research addresses crack growth in aircraft, and

appropriately the studies are made on aluminum materials with either riveted or adhesive

connections. These types of attachments limit crack growth in that a crack progressing in a shell will

not propagate up into the stiffener.  This presents the beneficial effect of load shedding, as the load

originally placed on both the shell plate and the stiffeners is transferred to the intact stiffeners.  In

such a case, the crack may only grow to a limited length because the intact stiffeners constrain the

crack opening displacement, thereby removing the driving force of the crack.  The development of

fracture mechanics analysis of stiffened panels sought to explain this behavior quantitatively.

As early as 1959, Sanders studied the case of an integral stiffener centrally located on a thin,

orthotropic sheet with a symmetric transverse crack [135].  He made the simplification that the sheet

was extendible only in the longitudinal direction, giving a solution independent of Poisson’s ratio.

Grief and Sanders [64] later revisited this assumption in 1965, developing a plane stress solution as

well as the solution for a non-symmetric crack case. Arin continued the study to multiple stiffeners

[8].  Isida [74] studied the effect of bending stresses in this problem in 1970, but for most stiffened

plates in ships the effect can be neglected.  Isida later developed a solution for a center-cracked

panel with stiffened edges, once again incorporating the effects of bending stresses [76].

As mentioned previously, the driving force in fracture research of stiffened panels was their use in

aircraft.  Consequently, much research was devoted toward developing stress-intensity factor

solutions for riveted, stiffened panels. Bloom and Sanders [21] first modeled the effect of a riveted

stiffener on the stress intensity factor for both a symmetric and non-symmetric crack in 1966.

Cartwright et al. [26] adapted the riveted stringer methodology to Dugdale’s strip yield model [44]

in 1978.
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Mansoor Ghassem [62] developed the fracture diagram as a design aid to stiffened panels in 1980.

The fracture diagram is a plot of the transition between brittle fracture and gross section yield, using

LEFM to evaluate the stress intensity factor.  An extension was made for crack tip plasticity by

manipulating Dugdale’s strip yield model [44] into a stress intensity factor.  The fracture diagram

assumed stable crack growth occurred up to the line denoting the failure surface.  Furthermore, a

computer code was written as a means of predicting the number of cycles to failure based on LEFM

analytical K solutions.  The concept seems to have merit, although the assumptions within the

development of the computer code necessitate further study in stiffened panel application.  Also, the

approach did not take into account residual stresses and was compared to a limited amount of test

data for stiffened panels.

In 1971, Poe studied fatigue crack growth rates in aluminum panels with both riveted and integral

stiffeners [122-23].  He used the Paris Law in conjunction with LEFM stress intensity factors to

predict fatigue crack growth.  Crack growth predictions were backed by full scale testing of

aluminum stiffened panels with varied rivet spacing and stiffening ratios.

In order to predict the crack growth rate according to the Paris Law, a stress intensity factor range is

required to characterize the crack driving force. Closed form solutions for stress intensity factors for

different loading conditions and geometries have been developed for years [104, 145, 131].  Poe

combined the known solutions for a center through-thickness crack with remote, uniformly applied

stress, symmetric point forces, and crack face pressure distributions.  This procedure, known as

superposition, was also demonstrated by Vlieger in 1973 [164].
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Superposition, as well as LEFM, is valid only in cases of linear elastic behavior.  However, since

the vast majority of service stresses are well below the yield strength of the material, these

principles may be applied to fatigue crack propagation. An illustration of his use of superposition in

the case of riveted stiffeners is shown in Figure 2-7.
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Figure 2-7: Use of superposition to develop analytical solution total stress intensity factor.
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The stress intensity factor for the case of a plate with riveted stringers will now be explained.  The

stiffened panel can be subdivided into several contributions.  First, the geometry is separated into

two parts:

1.  A plate subjected to uniform axial stress and stiffener connection forces

2.  A separate stringer with reaction forces

The stiffener with reaction forces serves only as a means to determine the connection forces and

does not contribute to the total K-factor.  The connection forces are determined through

displacement compatibility and force equilibrium between the stiffener and the plate, and the

interested reader is referred to Poe’s original work for the methodology (The connection forces will

be determined through another means in this paper, as developed by Nussbaumer [109]).

Next, the plate is subdivided into two components:

1.  A plate subjected to uniform axial stress, for which Equation 2-1 applies.  For

convenience, this relation is repeated here:

aK πσ=1

2.  A cracked plate with connection forces, Fi, applied.  This problem can be further broken

down to two contributions:

A.  An uncracked plate with a connection forces acting on it.  If a crack were

introduced, the crack faces must be free of shear and normal stresses.  Therefore, a

pressure distribution resulting from the connection forces is determined along

fictitious crack faces, as shown. Since this component has no crack in it, the K-factor

is zero (K2 = 0)

B.  An equal and opposite set of pressure forces must be exerted on the introduced

crack.  This distribution opposes the pressure distribution created by the connection

forces and fulfills equilibrium, creating the stress-free condition along the crack

faces. The stress intensity factor for a pressure distribution along the crack faces is:
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where Fi is the contribution from the ith set of symmetric rivets, and pi(x) is the

pressure distribution determined using an ith set of unit rivet forces.

The final result is assembled into a total expression for the stress intensity factor:

 321 KKKK Total ++=           Eqn.  0-13

The total stress intensity factor is often lumped into a single coefficient to be applied to the solution

for the through-thickness crack in  a plate subjected to tension.  That is, a multiplier is developed as

a function of the stringer and its connection:

aFK PS πµλξ ),,(.. =                                            Eqn.  0-14

where:   ξ represents the rivet spacing ratio, d/2s

 λ represents the transverse stiffener spacing ratio, a/2s

  µ represents the stiffness ratio of the stiffener to the plate,

plstst

stst

EsEA
EA

)2(+
=µ                                                                        Eqn.  0-15

Decreasing the rivet spacing to a very small distance simulates the effect of having an integral

stiffener.  The crack may propagate into an integral stiffener and completely sever it.  To develop

the stress intensity factor, the K-factor was determined for various crack lengths.  When the crack is

near a stiffener (Around 0.95 times the stiffener spacing), the stiffener is considered completely

severed and its load is shed to the remaining net section. Using this procedure, an abrupt jump in the

K-factor is noticed due to the immediate loss of the stiffener.
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Figure 2-8: K-factor normalized to infinite plate solution in a panel with integral stiffeners [123].

Poe noticed that the crack grew at approximately the same rate in the stiffener as it did in the plate,

which enabled a linear interpolation of the stress intensity factor between the solution for an intact

stiffener and the completely severed stiffener.  Figure 2-8 shows the results for the stress intensity

factor as a function of crack length.

The resulting stress intensity factors could now be utilized in a fatigue crack propagation analysis.

Comparing with experimental behavior, the predictions made using the resultant stress intensity

factor with the Paris Law showed good agreement.  Additionally, the relationship between stiffness

ratio and cracking behavior could be directly forecast.  Residual stresses, however, were not

considered in the study.

Salvetti and Del Puglia conducted a similar study and approach on 6 different riveted stiffener

configurations [134].   They studied 60 panels, under various constant amplitude loading conditions,

f
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and noted discrepancies between Paris Law behavior and experimental behavior at different crack

lengths.

Swift later modified Poe’s solution for the case of flexible rivets [122] and adhesive panels [70].

Ratwani [71] studied panels with reinforcement attached through adhesion, comparing experimental

stress intensity factors with both mathematical and finite element analysis results, including the

effects of out-of-plane bending.  Arin [8] studied the effects of plate orthotropy in adhesive stiffened

panels on the stress intensity factor. He found little variation from that of an isotropic plate with

stiffener, validating the initial assumptions made by Sanders in 1959.

Most of the aforementioned studies have been made on aluminum panels, often with riveted or

adhesive bond stiffeners.   In fact, there has been very little experimentation on welded, stiffened

steel panels to determine fatigue crack growth rates.  Kinoshita et al. [51] studied the Paris Law

applicability to ship structural plate steel in 1973.  His findings showed that the Paris Law

effectively modeled crack growth in both typical ship structural plate and accurately described crack

growth in a ship corner model.

The earliest work most closely fitting the current project’s objective was performed by Watanabe et

al. in 1979 [166].  The researchers studied crack propagation in a welded, stiffened panel typical of

ship structures.  Analytical modeling approximated the stress intensity factors for crack growth in

the panel with stiffeners, using the Paris Law to evaluate the growth rate.  Watanabe found that the

predictions compared reasonably well with the actual behavior, although the extent of the

investigation was limited to one configuration.  The investigation, although limited in scope,

demonstrated the possibility of using the Paris law in conjunction with LEFM to compute relatively

accurate fatigue crack growth rates.

Petershagen and Fricke [120] conducted several fatigue crack growth experiments on stiffened

panels.  Experimental testing was emphasized in the study, although the effects of residual stress

were neglected. Since much of the fatigue crack growth in ships occurs at low stresses, where
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residual stress plays an important role, their inclusion is deemed necessary to correctly predict

fatigue crack growth behavior.

Nussbaumer, Dexter, and Fisher [109-11] took residual stresses into account in a study on crack

propagation through large-scale experiments on welded box girders.  The experiments incorporated

several fatigue sensitive details into a three-flanged box beam (See Figure 2-9), an attempt to

simulate the structural redundancy found in unidirectional doubled-hulled ship structures.

Figure 2-9: Test configuration and details investigated by Nussbaumer [109].

The present research will follow the objectives and methodology of Nussbaumer’s work. The

present research will extend the research of Nussbaumer et al. to the case of multiple stiffener plate

geometry rather than the unstiffened cellular geometry.

Nussbaumer developed both an analytical and finite element models to address fatigue crack

propagation based on LEFM.  For fatigue crack growth, it was assumed that stresses significantly

less than the yield strength of the material comprise the overwhelming majority of fatigue crack

growth.  Limited amounts of plasticity occur at these service stresses, allowing the principles of

superposition and a simplified LEFM stress-intensity factor calculation to be used.
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His analytical solution used the basic solution for a center crack in an infinite plate with a series of

correction coefficients derived from the work of Isida, Poe, and Grief and Sanders [64, 74-76, 122,

123]. While Poe’s work superimposed K-factors from applied loads (uniform axial stress and rivet

point forces from stiffener-plate interaction), Nussbaumer’s analytical model built upon Poe’s

model with the addition of a residual stress K-factor.  The residual stresses were modeled based on

Greene’s function, integrating the solution for a pair of splitting forces acting at the crack faces.

The K-factor due to residual stress is as follows:
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An illustration of the derivation can be seen in Figure 2-10.  Graphically, the solution for a pair of

splitting forces is transformed into an integrated solution for a uniform stress acting
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Figure 2-10: Use of Green’s function to develop the stress intensity factor due to the residual stress
field [131].

over an area, dx.  Below the illustration, the accompanying solution for a pair of splitting forces

(Left expression) is transformed into an integration of stress over an area, dx (Bottom, middle

expression).  Algebraic manipulation yields the resultant equation for a stress field acting on the

crack face over an area dx (Right expression).
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The LEFM K-factor solutions used were all developed for infinite plates subjected to various loads.

Several coefficients have been used to correct for the finite width of the plate, but these tend toward

infinity as the plate becomes fully cracked.

Nussbaumer proposed a net section coefficient to account for the finite width effect.  The net section

may be defined as the full cross section of the ship less the cracked components, cutouts, and holes.

Cracking a stiffened plate in a redundant structure has the effect of increasing net section stresses.

In other words, the stiffness of the structure may be expressed as a function of crack length.  Such a

correction would more adequately simulate the finite width effect than other suggested coefficients.

Referencing the initial geometry of the structure, the increase in net section stresses can be

determined from the net section modulus:
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where: I0 = original moment of inertia

c0 = original centroid

I(a) = Net section moment of inertia

c(a) = Net section centroid

Nussbaumer’s [109-111] finite element model (FEM) consisted of determining J-integral at various

crack lengths and translated it to an equivalent K.   The J-integral is determined by taking a contour

integral around the crack tip.  It is a measure of the change in potential energy associated with

extending the crack an infinitesimal amount, da.  Many commercial finite element packages are

equipped to perform such a calculation.

Before applying any external loading to the finite element model, residual stresses were input as

applied temperatures causing shrinkage. An iterative process was employed on the uncracked

geometry to develop the stress patterns measured in the specimens. A crack was then introduced, i.e.

releasing boundary conditions along the nodes defining the crack faces, and the finite element
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analysis automatically redistributed the residual stresses by maintaining force equilibrium. Use of

contact elements along the crack face prevented overlapping of surfaces. These residual stress

patterns redistribute as the crack propagates since they are originally configured on the uncracked

geometry. This procedure will be followed in the current study, and a more detailed procedure will

be discussed later.

When the stress intensity factor range is based only on the applied stress range (no residual stresses),

both the analytical model and the FEM model predict increasing growth rates.  Residual stresses

were then considered in these models.  A typical distribution of residual stress in a stiffened panel

structure is shown as compared to the experimental data in Figure 2-11.
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Figure 2-11: Typical residual stress field at fillet welded joints—used in Nussbaumer’s analytical
model [109-111].

There was significant scatter in the measured residual stress distributions for these experiments.

Therefore, three distributions were examined, one based on the lowest observed residual stresses,

one based on the largest observed residual stresses, and one that was an average or typical

distribution.  All of the distributions were in self-equilibrium,that is, compression zone area was

equated by the area of tensile zones throughout the entire box section.
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All three residual stress distributions were applied to the FEM model.  The average distribution

gave results that were generally just below the experimental data in terms of the growth rate.  The

maximum residual stress distribution causes a dramatic decrease in the growth rates to the point of

virtual crack arrest.  The minimum residual stress distribution gave results that were good up to 100

mm of crack length but then were too high in growth rate.  These results show that the calculations

are extremely sensitive to the residual stress within the range of variation that was observed.

In fact many other variables, including the difference between the upper bound growth rate and the

lower bound growth rate, made minimal difference in the calculations in comparison to the residual

stress. Therefore, if modeling of this type of crack propagation is to be improved, it is not necessary

to know the crack growth rate (above threshold) any more accurately, and more effort should be

focused on studies of the residual stress and how it is affected by fabrication sequence.  Better data

on the threshold crack growth rates would improve modeling of the first stage of crack growth,

however.

In the analytical model, the average residual stress distribution was used directly in its

corresponding K-factor, KRES, Eqn. 2-16. The residual stresses were not redistributed as the crack

propagated. Such redistribution, although factual, was deemed too complicated to incorporate into

the analytical model.  Only the tensile part of the stress intensity factor range was considered

effective and was used in the Paris law (The effective stress intensity factor is defined in Figure

0-5).

Based on the effective stress-intensity factor range, the analytical model gave reasonable results, as

compared to the experimental data in Figure 2-12.  The finite element model, where K-factors are

determined through converted J-integrals, and residual stresses were redistributed, provided similar

results.
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Figure 2-12: Fatigue crack predictions for cellular box beam [109-111].

Nussbaumer found that both the analytical model and the finite-element (FEM) model predicted the

behavior reasonably well in the one-celled box beam (See Figure 2-12), and that neglecting the

effect of residual stresses increased the error significantly.  In addition, the FEM model predicted

crack closure at and behind the crack tip, consistent with the observations.  In an extension of his

research, Nussbaumer analyzed a multi-cellular box structure representative of a ½ scale model of a

double-hulled vessel.  His FEM predictions indicated that the crack opening stress was significant in

accurately modeling the crack growth, due to crack closure effects.  With the multi-celled structure,

the crack opening stress was predicted through finite element analysis.  The analytical model,

however, is not capable of accurately predicting crack closure effects. However, no experimental

data were available for comparison.

It is noteworthy that in the box girder tests, unless the cracks were repaired, they continued to

propagate in a stable manner until it was impossible to load the specimens due to excessive
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deflection.  The cracks often reached more than 1.5 meters in length, giving a clear demonstration of

the inherent structural integrity of a cellular structure fabricated from relatively thin plate (13 mm or

less) of reasonably tough steel.

Several other investigators have used techniques similar to Nussbaumer’s models. A decade before

Nussbaumer, Anil Thayamballi’s Ph.D. dissertation [154] outlines an almost identical analytical

approach to calculating fatigue crack growth through stiffened panels, including the effects of

residual stress. In addition, variable amplitude loading, ship failure assessment and residual strength

of ship structure are discussed. The residual stress distribution was determined using the

representative block tension and compression regions suggested by Faulkner [48-50], with the same

integrated Green’s function as used by Nussbaumer.  The dissertation includes an exhaustive

reference section of works pertinent to assessing fatigue crack growth, ship structural failure, and

wave loading representation.  However, no experimental verification was made to verify the

approach and its assumptions.

In 1996, Sumi et al. [142] used finite element analysis to study fatigue crack propagation in

stiffened panels similar to the deck structure in ship. A single crack in a stiffened panel and an array

of three cracks initiated at the stiffener locations was investigated, neglecting the effects of residual

stress.  Equivalent K-values were computed using ANSYS finite element software.  Four specimens

were tested: A plate with a center crack, a plate with an array of three cracks, and a stiffened panel

with a single crack, and a stiffened panel with an array of three cracks.  The applied stress range was

80 MPa, and the initial crack length was 8 mm in all cases.

The research was similar to the present course of study except for the exclusion of residual stress.

LEFM ∆K values were used in the Paris Law to predict crack propagation rates in mild steel.  For

the case of multiple cracks, a simple iterative solution was developed hinging on a reference crack.

The predicted results for the plate specimens were reasonably accurate, while the predictions for the

stiffened specimens over-estimated the fatigue life by about 25 percent.  The authors attributed the

error to lack of residual stress inclusion, noting the behavior in the stiffened specimens with respect

to their predictions.
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Other researchers using the analytical, LEFM-based approach to fatigue life prediction include Pang

in 1991 [116] and Cook et al. in 1992 [29].  Pang explored surface fatigue cracks emanating from

both welded cruciform joints and fillet shoulder. His analytical analysis of surface crack propagation

used a material threshold stress intensity factor to account for crack closure. This work, however,

did not attempt to account for residual stress, and the prediction errors (some being highly

conservative) was attributed to the uncertainty in the material threshold.

Cook et al. [29] outline a computer program developed to address cracks propagating from rivet

holes in aircraft structures.  Although the program addresses fatigue crack growth in aluminum

panels with riveted stiffeners, it includes the effects of residual stress at holes with compressive

residual stress introduced through cold expansion techniques.  Cold expansion, along with

interference-fit connections, has become a common technique to increase fatigue resistance at rivet

holes in damage tolerant design.  A LEFM superposition approach similar to Thayamballi’s [154]

was used to incorporate a stress intensity factor due to residual stress.  The residual stress field,

however, was characterized more precisely by Lagrangian interpolation rather than the simple linear

interpolation illustrated in Figure 2-9.  Stress intensity factors were determined through the use of

Green’s function, with a resulting expression similar to Equation 2-17.  Fitzpatrick and Edwards

provide an overview of this technique and its relation to residual stress fields [56].  Essentially this

is a means of determining K-values for a specific configuration through weight functions, where 8th

order Guassian integration was used to accumulate the total stress intensity factor for a varying

stress field.

Cook’s approach, although more detailed in determining stress intensity factors, did not resolve the

shortcomings of Nussbaumer’s analytical model.  Namely, the residual stress field was not

redistributed with crack growth, and crack closure behind the crack tip was not taken into account.

Therefore, the main enhancement of this model was the refined characterization of residual stress

field and its subsequent integration.  These corrections may be appropriate for application to cold

expansion residual stresses, where the stress fields can be characterized with relative accuracy.
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Welding residual stresses, however, vary so significantly that a refined approximation cannot be

justified at this time and a linear, worst-case model is more applicable.

To date, the previously mentioned works were the most significant advances in this subject.  Many

authors have confirmed the strong influence of residual stress on crack growth, although very little

experimentation has been conducted in long fatigue crack growth. The subject of residual stress and

its affects on small-scale fatigue and fracture has been studied extensively, however. A review of its

role in fracture and plastic collapse is presented by Clayton [27].
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1.5 RESIDUAL STRESS

Residual stresses in welded steel structures can contribute to the problems of: 1) hydrogen-assisted

cracking during fabrication; 2) brittle fracture during fabrication or in service; or 3) fatigue crack

growth in service.  Therefore, it is important to be able to predict the magnitude and distribution of

residual stress.  A good overview of residual stress effects on fatigue and the complexities involved

in predicting fatigue crack growth through residual stress fields is provided by Fitzpatrick and

Edwards [56]. An excellent work on residual stresses and their effects in ship hulls can be found in

an early book by Osgood [114].

Residual stress has a profound effect on fatigue, but it does not need to be taken onto account

explicitly in fatigue design or evaluation using S-N curves.  This is because the S-N curves are

already adjusted to reflect the worst-case effect of residual stress.  S-N curves are a lower bound to a

large sample of large-scale tests with the natural residual stress distributions in the welded

specimens. Thus, the appropriate worst-case level of residual stress is built into the S-N curves.  The

high tensile residual stress in welded details means that the mean level of applied stress has little

impact on the fatigue life, which also simplifies fatigue design and evaluation procedure.

There are special situations where residual stress should be explicitly considered in fatigue

evaluation using a crack propagation analysis.  For example, it is necessary to know the residual

stress distribution for the analysis of long propagating through-thickness cracks beyond the initial

fatigue life given by the S-N curves.  It is assumed that there are high tensile residual stresses in the

vicinity of the stiffener-to-plate welds.  Therefore, it is only necessary to know the compressive part

of the residual stress distribution that is far away from the weld.  Therefore, complex models to

predict the residual stress are really not necessary for this application.  Simplified methods, typically

idealized representations of residual stress fields based on experimental data, remain the best option

for routine engineering assessment.
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The uncertainty in the additional life due to long crack propagation is dominated by the uncertainty

in the residual stress.  Variations in the expected residual stress are due to the initial residual stress

in the plates and rolled shapes prior to welding, thermal cutting, and fabrication sequence.  Plates

and members are straightened at the mill to conform with tolerances.  After fabrication, assemblies

may be flame straightened to correct plate out-of-flatness or weld distortion.  The resulting

uncertainty can change the crack propagation rate by more than two orders of magnitude.

Narrowing this uncertainty will have the greatest payoff in terms of increased confidence in

structural integrity.

Fracture is very sensitive to microstructure and significant benefits could be obtained by continuing

to study how the weld thermal cycle affects fracture toughness.  Ductile fracture is not affected by

residual stress [57], however brittle fracture is dramatically affected by residual stress.  This is only

an issue in evaluating existing structures, because new structures should not be designed using

brittle materials.

Typically, worst-case assumptions are made regarding the residual stress in brittle fracture

evaluations.  In fact, this simplifies the evaluations significantly because the peak stresses (applied

plus residual) are taken as equal to the actual yield strength.  This eliminates the need for

determining the applied stresses.  In rare cases, it is acceptable to take into account some reduced

residual stress other than the worst-case assumption.  However, it dangerous to narrow the margin

too much on the possibility of brittle fracture.  This is the only situation where a detailed description

of the residual stress, such as could be obtained with a numerical simulation, would be useful for

fatigue and fracture design or evaluation.

A large amount of measured residual stress data from rolled shapes and welded built-up members

have been obtained over the years at Lehigh, primarily by Lambert Tall and his colleagues [4, 19,

86, 147, 153].  Experimental data [4, 19, 53, 60, 86, 147, 153] show that the initial residual stress in

welded and rolled sections is highly variable and depends on the fabrication process. The ranges in

the value of peak tensile residual stress are at least plus or minus 40% about the mean.
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Another significant factor that must be taken into account is fabrication sequence.  Measured

residual stresses in box sections depend strongly on which web is welded to the flange first [53,

115].  When there is excess gap between members to be welded, they are often pulled together

using a "come along", which has a profound effect on the built in residual stress in many

neighboring members.  Flame straightening may be used to correct plate out-of-flatness or weld

distortion, which also alters residual stresses.

Many of these issues were faced through compression research of stiffened panels [48-50, 71, 72,

87, 105,124,139, 165].  Vroman took residual stress data in 3 identical steel stiffened sheet panels in

1995 [165]. The configuration was typical of naval vessel structures, and is seen in the Figure 2-13.

The specimens were fabricated at the Naval Surface Warfare Center (NSWC) at Carderock,

Maryland, with the welding sequence being typical of naval ship construction. Measurements were

taken throughout the fabrication process through use of a Whitmore gage: Once prior to welding,

once after tack-welding the stiffeners to the plate, and finally after welding was completed. The data

points were spaced at 70 mm in the center bay only, with results for the three panels as indicated in

Figure 2-14.

Normally one would expect high tensile regions around the stiffener region, with equilibrating

compressive stresses in between stiffeners.  The measured forces across the panel do not satisfy

equilibrium, and thus the data must be questioned.  It is likely that the measurement spacing did not

accurately capture the narrow tensile regions surrounding the
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Figure 2-13: Typical grillage tested by Vroman [165].
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Figure 2-14: Residual stresses in three stiffened panels tested by Vroman [165].
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stiffeners. An important note in Figure 2-14 is the variation in measured residual stresses despite the

fact that the steel plating was “carefully selected from a large batch to all exhibit similar strengths,

mean stresses, etc.”  In fact, yield stress measurements in the stiffeners were all matched at 383

MPa, the plating matched at 305 MPa, and the welding pattern unchanged.  Even with such rigorous

quality control, the difference between the residual stress data in the three identical panels is

apparent.

Earlier compression tests by Kondo and Ostapenko provide a more accurate profile of the residual

stress field. Their sectioning coupon pattern was more refined (See Figure 2-15).

Figure 2-15: Coupon pattern used in sectioning of tested stiffened panels by Kondo and
Ostapenko [102].

This fine sectioning pattern was carefully measured and extracted to obtain residual stress

measurements.  The results may be seen in Figure 2-16. This plot characterizes the residual stress

pattern expected in welded stiffened panels.  The measurements capture the tensile zones around the

stiffener weld lines and demonstrate the equilibrium conditions found in residual stress patterns.
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Figure 2-16: Residual stress measurements obtained by Kondo and Ostapenko [102].

Compression tests at Simon Engineering Laboratories at the University of Manchester [71, 105],

and at Monash University in Australia [105], included measurements of residual stress.  Totaling

over 40 tests, the results provide residual stress data for a variety of welding configurations on

various stiffener geometries.  In particular, a large number of hole-drilling measurements were taken

across some panels with geometry similar to the current investigation’s configuration, with the

exception of a smaller weld size (6-mm). As typical, there was a wide range of residual stress

measurements in very similar panels.

Notwithstanding this uncertainty, welding simulation models have been developed and have been

used for some practical applications [7, 39-42, 63, 67, 83, 95, 96, 132, 133, 160-162]. Kamtekar

[83] provides a review of the development of residual stress prediction attempts.  He demonstrated
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an iterative procedure using the finite difference method to predict residual stress patterns.

Significant simplifications are typically used to make the numerical analyses feasible. For example,

two-dimensional generalized plane-strain models have been used in most cases. Despite the

simplifications, these analyses are far from routine. Yet there is a need to model complex three-

dimensional connections.  Such three-dimensional calculations require significant labor to set up

and significant resources to run.  For these reasons, numerical welding simulation has remained

primarily a research tool rather than a part of routine engineering assessment of fracture critical

structures.

Simplified methods, typically idealized representations of residual stress fields based on

experimental data, remain the best option for routine engineering assessment.  The simplest method

of analysis is to rely on measurements in a similar hot-rolled or welded built-up structural member.

Tall and Alpsten [147] state that peak longitudinal residual stresses in hot-rolled and built-up

structural members can be estimated within 70 MPa based on experimental data and empirical rules.

The typical residual stress distribution for stiffened panels and box sections was shown in Figure 2-

11. This idealized distribution is based on the work of Faulkner [48-50], who stated that the width of

the tensile zone, assumed to be at a stress equal to the yield strength, is equal to between 4 and 5

times the thickness of the panel, independent of stiffener spacing.  The net tensile force is balanced

with a region of constant compression between the stiffeners. In addition, the following formula was

given by Faulkner et al. [50] for characterizing the residual stress field between stiffeners:
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where η = coefficient for determining the width of the tension block, ηt

σr = magnitude of the compressive residual stress block

σo = yield stress of the plate

b = stiffener spacing

t = plate thickness
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Typical values for η in as-welded ships range from 4.5−6, while values of 3−4.5 were given to

account for the shakedown of residual stress in ship service.  This equation assumes an idealized

situation in which both the compressive and tension zones are rectangular blocks.  Modeling the

tensile block as a triangular region (Figure 2-11) gave the empirical residual stress distribution used

by Nussbaumer, Dexter and Fisher [109-111], a distribution confirmed to be relatively accurate in

recent experiments on box sections [115].  This type of residual stress distribution should be used

for cracks in the shell of ship structure propagating between stiffeners.

For more complicated geometries, a simple estimation of peak values of residual stress can often be

obtained by considering a uniaxial elasto-plastic model.  The strain can be estimated with the

average coefficient of thermal expansion and the difference between the phase transformation

temperature and room temperature.  This strain is applied to the uniaxial model to estimate the peak

stress [95].  This approach does not give the distribution of residual stresses through the thickness of

the plate.

In order to estimate the distribution of the residual stresses, the actual multiaxial behavior of the

component must be considered.  If simple analytical models exist for the component (e.g. a simple

beam or plate), the tendon-force or shrinkage-force approaches [17, 20, 93, 94 146, 167] may be

used.  In these approaches a force is calculated and applied to the component along the weld axis, in

a way similar to that of a prestressing tendon.  The reaction of the component to this force gives the

residual stress.  In the simpler applications, this force is taken as 20% of the heat input [94, 167] or

proportional to the weld area [17, 20].  The more sophisticated approaches consider the temperature

distribution in the weld and are usually attributed to Russian papers by Okerbloom [57].

There are simple numerical models, for example Tall [146], which generally break the plate or other

geometry into fibers or strips.  The transient temperature distribution is applied and strain

compatibility is enforced among the strips.  These models are generally applicable to only a specific

type of component.  The finite-element method offers greater flexibility and accuracy. The

justification for the strip models is the savings in computer time relative to advanced nonlinear



46

transient finite-element analyses.  Since modern computers are increasingly able to handle these

finite-element analyses, there is no longer any reason to consider the strip models.

An example of finite element analysis to determine residual stress distributions is shown by Finch

and Burdekin [51].  They illustrated the residual stress field in a butt welded plate and a butt welded

pipe-on-plate geometry, and calculated J-integrals for various crack lengths and loads.

Interestingly, they found [for the butt welded plate] that the J-integral obtained in a plate with

residual stresses was always larger than that of a plate without residual stress, even when the crack

was well into the compressive region. Furthermore, they found that at certain loads, the plate with a

small crack in the tensile region of residual stress had a higher J-integral than the case where the

crack had penetrated the compressive region. The plate with the small crack, therefore, would have

the non-intuitive aspect of being more susceptible to cracking than the plate with the larger crack in

the compressive residual stress zone.

This behavior of crack propagation was also noted by Almer et al. [3].  A series of experiments was

performed on compact specimens with and without residual stress introduced.  A similar study was

conducted by Bucci [24]. X-ray diffraction was used to quantitatively measure the residual stress

field and compared to finite element analysis.  The finite element analyses compared relatively well

with the x-ray diffraction measurements with the exception of overestimating the residual stress

near the source of tensile residual stress.  The researchers noted that crack propagation rates became

highly sensitive to residual stress as the applied loading decreased.  Such behavior reinforces the

importance of characterizing worst-case residual stress patterns, especially in ship loading

conditions where many of the applied loads are very small.

The beneficial effects of compression zones on crack propagation have been noted for quite some

time.  Many investigators have sought means of exploiting the compressive regions as crack

arresters through a process called “stress coining”.  An analysis and discussion has been conducted

by Ogeman et al. [112] on the applicability of this process to longitudinal connections at web-frame

intersections.
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Averbach and Lou [11] noted the crack propagation rates in carburized compact specimens.  Using

superposition, they defined an internal stress intensity factor to account for the residual stress

according to a distance, di, correlating with the extent of residual stress, and δ i, the residual stress at

a given point.  Their simple relation was as follows:

2
1

iii dK δ=                                           Eqn.  0-19

This relation was added to the applied stress intensity factor to determine the effective stress-

intensity factor, Ke.

Beghini et al. [16] studied the effects of residual stress in a series of compact specimen tests in

1994.  They modified an expression from Tanaka [148] to account for the plasticity-induced crack

closure, an attempt to approximate the effective stress intensity factor actually occurring at the crack

tip. Weight functions were used to modify the stress intensity factor, and experiments indicated that

the superposition of the residual stress K-factor was only applicable for cracks with no closure.  The

authors, however, remarked that crack closure would not have significant effects in the case of long

cracks [16]. When comparing the predictions including residual stress with those that neglected

residual stress, the results showed conclusively the important influence that residual stresses have.

Torii et al. [155,156] studied surface crack propagation through residual stress fields in 1989,

indicating that the crack propagation rate could be based on a combination of the applied stress

intensity factor and the maximum stress intensity factor.  Their results modified the Paris Law into

the form:
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da )()( max∆=                                         Eqn.  0-20

where p and q were empirical coefficients that satisfied the relation: p + q = 1

Although the results were based on an elliptical surface flaw in a compact specimen, the approach

provided a new formulation for the Paris Law that could hold significance.

Another modification of the Paris Law was presented by Toyosada et al. based on an effective ∆K

called the ∆KRP [157, 158].  The ∆KRP parameter is defined as the stress intensity factor required to
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overcome the effect of the previous plastic zone.  When the crack is opened with significant applied

loads, a plastic zone is generated around the crack tip, which tends to keep the crack tip closed.

With the crack held closed by the plastic zone, part of the applied stress is not effective since a

portion of the applied tension is devoted to overcoming the plasticity-induced closure.

The ∆KRP takes into account the plastic deformation ahead of the crack tip that has occurred from

previous load cycles.  In regions of tensile residual stress, the ∆KRP decreases, translating to more a

more effective ∆K range and faster growth rate.  In regions of compressive residual stress, the ∆KRP

increases, taking into account the beneficial effect of compressive residual stress maintaining the

closed crack front.

The study was based on a modification of Newman’s crack closure model [139], where plastic

shrinkage along the crack faces and redistribution of the plastic zone ahead of the crack was taken

into account.  Compact experiments showed good agreement with the model, but the improvement

of the predictions in tensile-only cycling was negligible.  Its merit could be significant in variable

amplitude loading where both compressive and tensile cycles exist, although the complexities

involved in variable amplitude loading undermine the method’s ease of use.

Itoh et al. [77] and Ohji et al. [113] have demonstrated that the use of a simpler LEFM ∆Keff based

on the crack opening load was sufficient to produce reasonable crack growth rate correlation.

Neglecting the redistribution of residual stress was found to be conservative with positive R-ratios,

and propagation rates were equivalent with respect to the crack opening ratio, U (Elber’s ratio) [45].

For convenience, Elber’s ratio is restated here:
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Itoh et al. programmed this approach into a computer, providing crack growth estimations relatively

quickly. A flow chart for such an algorithm is presented in the paper as well.

This simplified approach seems prudent in light of the uncertainties involved.  It is anticipated that

such a procedure will be effective in providing worst-case estimates of crack growth, although the
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accuracy in any one test may be compromised.  Leggatt has confirmed this approach as satisfactory

[92].  He comments on the application of the approach in PD6493 procedures and outlines the

extension toward CTOD design curves and J-integral schemes, which are comparable to Xiao and

Dexter’s methodology [169] and the procedure followed by Stenseng [141].

1.6 VARIABLE AMPLITUDE LOADING AND STRUCTURAL RELIABILITY

So far, crack propagation has been discussed as if the loading were constant amplitude.  However,

the actual service load history of ships consists of cycles with a variety of different load ranges, i.e.

variable-amplitude loading.  Such wave loading data is found in SSC-268 [68]. Some attempts have

been made to model crack growth behavior under a specified loading history [9, 14].  These models,

often complex, generally address highly random flight loading and relatively simple models

presented hereafter have demonstrated similar accuracy [10].

There are several accepted ways to convert variable stress ranges to an equivalent constant-

amplitude stress range with the same number of cycles. SSC-315 addresses some of these methods,

although comparisons were made with compact specimen testing [43].  These procedures are based

on the damage summation rule jointly credited to Palmgren and Miner (referred to as Miner's rule

[103]). Most large-scale experimental studies have confirmed the use of Miner’s rule [137].

However, there is some experimental evidence that indicates that Miner’s rule can be very

conservative in some cases, and unconservative in others [162].  For more information on these

effects, the interested reader can consult the work of Gurney [65], Solin [140], Engle [47], and

Winter and Maccinnes [168].

The most rigorous way to calculate an equivalent constant-amplitude stress range with measured

stress history data is to sort through the stress history in the time domain and count the stress ranges;

i.e. specific differences between maximum stress peaks and minimum stress peaks.   A stress-range

occurrence histogram is then constructed from the cycle-count data. This procedure was analyzed

by Thayamballi [154]. Other methods of calculating an equivalent constant-amplitude stress range
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involve simple relations to statistical measures of the variability of the stress history such as the

root-mean-square (rms).

For the cycle-counting approach, there are at least two widely accepted ways to count cycles: 1) the

mean-crossing method; and, 2) the rainflow method.  The mean-crossing method assumes that the

stress-time history is essentially stationary about a mean value (for short periods) and a cycle is

counted as the value of the stress passes from below to above the mean.  The maximum and the

minimum value of stress are the highest and lowest values that occurred in the time interval since

the last mean crossing.  Intermediate oscillations between successive mean crossings are ignored,

counting only the one cycle with range equal to the maximum minus the minimum.

The rainflow method counts cycles as closed loops within a cycle counting period.  Essentially, the

largest maximum is matched with the largest minimum, then the second largest pair is matched, and

so on.  The rainflow method does count intermediate oscillations as individual cycles.  One problem

with rainflow counting is that, depending on how long the cycle-counting periods are, a maximum

may not be associated with a minimum until numerous mean crossings have occurred.  This seems

inconsistent with the fact that a propagating fatigue crack could propagate beyond the location

where the maximum occurs before the corresponding minimum occurs and the cycle is counted.

Another issue with cycle counting is a cutoff or threshold.  Depending on the sampling frequency

and the precision of the data, there will be very large numbers of very small oscillations.  It is

generally agreed that these very small oscillations do not have a significant effect on the fatigue life,

so typically some arbitrary cutoff is used below which cycles are ignored.  In practice, a cutoff of

about 3.5 MPa is typically used.

Once the stress range occurrence histogram is developed, the equivalent constant-amplitude stress

range can then be calculated using Miner’s rule [103].  If the exponent of the S-N curve is equal to

3, then the relative “fatigue damage” of stress ranges is proportional to the cube of the stress range.

Therefore, the effective stress range is equal to the cube root of the mean cube (rmc) of the stress

ranges, i.e.:
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SRe = [ Si (ni/Ntotal)  Si 3 ] 1/3                                 Eqn.  0-21

where  SRe = effective constant-amplitude stress range,

ni = the number of stress ranges in interval associated with SI , and

Ntotal = the total number of stress ranges in the stress time history.

The ratio ni / Ntotal is equal to the fraction of the total stress ranges in the interval of magnitude Si.

As previously mentioned, there are some simple methods of estimating an equivalent constant-

amplitude stress range directly from the statistics of the variability of the stress history.  The root-

mean-cube (rmc) stress range can be estimated indirectly from the rmc acceleration amplitude from

ship motion studies.  This approach relies upon a linear relation between the stress range and the

acceleration that must be obtained from dynamic structural analysis or from correlation of measured

data.

In previous work on fatigue of highway sign structures for the National Cooperative Highway

Research Program, another simple approach was used [82].  The effective constant-amplitude stress

range is assumed to be equal to 2.8 times the rms of the stress.  In this case, the rms can be

determined directly from power spectrum data.  Note that this rms is the rms of the stress time

history itself, not a property of the stress ranges, as is the rmc stress range described above.

Therefore, there is no need to count cycles from the actual time histories when using these simple

approaches.

An effective constant-amplitude stress range should be estimated for several discrete levels of Sea

State. Then, using an estimate of the period from each sea-state such as the significant wave period,

the number of cycles in each sea state can be estimated from the number of hours in each sea state.

The fraction of the life that is consumed by a certain duration of a specific sea state can be obtained

from the ratio of the number of cycles in that duration to the number of cycles to failure (Ntotal from

Miner’s rule) for the effective constant-amplitude stress range associated with that sea state.   If a
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mission profile can be defined that consists of a series of sea-states, the total fraction of life

consumed by that mission is the sum of the fractions consumed at each sea state.  The total number

of missions that can be carried out before failure is the reciprocal of this fraction of life per mission.

A good example of this type of analysis can be found in a paper by Sikora et al. [137].

The plasticity at high levels of stress will have the effect of increasing crack closure and therefore

reducing crack growth rate.  Therefore, it is conservative to ignore this effect in the effective stress

range concept.  However, it is important to compute a unique effective stress range whenever the

character of the loading changes significantly, e.g. as in a storm.

A number of authors have developed methods of fatigue failure assessment through probabilistic

methods [10, 28, 59, 79, 82, 90, 139, 168].  A recent report [100] summarizes the state of the art in

reliability analyses for ships.  Since these methods are statistical analyses and the objectives of the

current study focus on the determination of crack growth rate, only a brief summary will be

presented.

Freudenthal and Shinozuka [59] considered upper and lower bounds of ship survival. They

observed the scatter in fatigue life prediction of aluminum details and concluded that these lives

were a random variable with respect to constant and variable loading.  They formulated a statistical

life-estimation model based on the multiple load path nature of a redundant structure comprised of

many of these details.

Jiao [79] discussed a fatigue reliability model based on the Paris law in which the crack growth rate

was considered a random variable except its dependence on crack size.  This was assumed because

of the variability in loading and its corresponding effect on crack size. Sequence effects are

incorporated in a model developed by Columbi and Dolinski [28]. Lambrigger [90] provides a

commentary on the use of Weibull probability distribution functions for assessing material failure, a

commonly used approach for determining critical crack sizes.  This approach is outlined by Alaa

Mansour for computing peak wave loadings [101], and detailed in SSC-322.  For an in-depth

review, the reader is directed to the original works.
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Soares and Garbatov [139] present a method based on the section modulus of the ship hull at any

given point in time.  They related a ship’s reliability to the incidence of repair and inspection, and

compared their methods with case studies of two tankers.  The results showed intuitive

conclusions—that increased inspection and repair highly contribute to the structural reliability of the

hull at any given point.


